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An experiment is reported, in which turbulent shear-stresses as well as mean 
velocities have been measured in a three-dimensional turbulent boundary layer 
approaching separation. It is shown that even very close to the wall the stress 
vector does not align itself with the mean velocity gradient vector, as would 
be required by a scalar ‘eddy viscosity’ or ‘mixing length’ type assumption. 
The calculation method of Bradshaw (1969) is tested against the data, and found 
to give good results, except for the prediction of shear-stress vector direction. 

1. Introduction 
The primary purpose of this paper is to report the results of a three-dimensional 

turbulent boundary-layer experiment, in which vector profiles of the turbulent 
shear-stress were obtained in addition to those of mean velocity. The need for 
measurements of this type has been expressed by Bradshaw (1969) and Nash 
(1969), both of whom have recentIy developed methods for solution of the 
incompressible turbulent boundary-layer equations on flat or slightly curved 
surfaces in regions far from edge or corner effects. 

These methods are very different from earlier methods (e.g. Cumpty & Head 
1967), which use boundary-layer integral equations and require empirical input 
on mean velocity profile shapes. It has become increasingly evident, as shown by 
Klinksiek & Pierce (1969), that current proposals for representing cross-flow 
velocity profiles in terms of a small number of parameters are not satisfactory. 
Hence, the hope for construction of a general, integral equation method appears 
dim at present. 

The methods of Bradshaw (1969) and Nash (1969) are basically similar in 
that both involve numerical integration of boundary-layer differential equations 
which contain as unknowns the components 7,: and T~ of the turbulent shear- 
stress vector. In  both methods an equation based on the turbulent energy equa- 
tion is used to describe the evolution of the magnitude of the shear-stress along 
a mean flow streamline. The empirical functions of Bradshaw, Perriss & Atwell 
(1967) are carried over directly in their two-dimensional form. The basic difference 
in the methods lies in the assumptions regarding the direction of the shear-stress 
vector. 
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If rectangular Cartesian co-ordinates (2, y, x ) ,  where y is normal to the wall, 
are used to define the mean ( U ,  V ,  W )  and fluctuating (u, w,  w) components of 
velocity, then rz = (-PUG) and rz = ( -PEG) are the components of turbulent 
shear-stress in the 2 and x directions. The two major gradients of mean velocity 
aUlay and aW/ay, the components of the mean velocity gradient vector, define 
the direction of mean rate of strain in a boundary layer. Nash argues that the 
shear-stress is likely to act in the mean rate of strain direction, so his closure 
equation is simply 

The same equation results from a scalar ‘eddy viscosity’ or ‘mixing length’ 
model. On the other hand, Bradshaw’s equations for the shear-stress components 
permit the shear-stress vector to deviate from the strain rate direction. His 
form results from arguments concerning the relative effects of the ‘pressure- 
strain’, ‘dissipation’ and ‘diffusion’ terms in the equations for the rates of 
change of the turbulence stresses ( -PUG) and ( -pWG) which are derivable from 
the Navier-Stokes equations (see Townsend 1956, ch. 2 ) .  Arguments for either 
method are based on slender evidence. The research, upon which this paper is 
based, was intended to provide some direct shear-stress vector measurements 
throughout the depth of a three dimensional turbulent boundary layer, so that 
some understanding of the facts of the situation might be obtained. 

The only other measurements of this sort (known to the author) are those of 
Bradshaw & Terrell(1969), also partially reported by Bradshaw (1969). In their 
experiment, measurements were made of velocity and shear-stress vectors on a 
flat plate attached to the trailing edge of a 45’ ‘infinite ’ swept wing. Small cross- 
flow was produced in the layer by the pressure field of the wing. The region of 
measurement extended downstream of the airfoil where, by the action of shear- 
stress alone, the cross-flow decays and the streamwise flow returns to constant- 
pressure equilibrium conditions. The results of these measurements tend to 
confirm Bradshaw’s (1969) method. However, in the inner third of the layer, the 
hypothesis represented by (1) appears to be confirmed by both experiment and 
theory. 

The experiment conducted for this report produced conditions that severely 
tested this hypothesis in the region close to the wall above the laminar sublayer. 
In  essence, a thick, two-dimensional turbulent boundary layer was forced to 
flow towards an ‘infinite’ 45’ swept step. The adverse pressure gradients imposed 
on the layer as it approached the step caused cross-flow to develop. The cross- 
flow became large close to the wall and near the separation line which occurred 
ahead of the step. Although not a particularly good test case for the theories, 
since the mean flow development depends far more on the pressure gradients than 
on shear-stress gradients, the experiments revealed that a substantial deviation 
existed between the shear-stress and mean velocity gradient directions through- 
out the inner as well as the outer parts of the outer flow. 

The experimental programme and methods are discussed in $92-4. The final 
results are discussed and compared to calculations made with Bradshaw’s method 
in $55 and 6. 
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2. Apparatus and general procedure 
The experimental programme was accomplished in two phases. The first phase, 

described in $3,  defined the mean flow field. The principal results of these measure- 
ments were profiles of total mean velocity &, yaw angle 0, and pitch angle p 
(see figure 3). The second phase, to measure turbulence intensity and shear- 
stress components, is described in $4. This article provides a brief review of 
the main features of the apparatus and the general experimental procedure. 

The low turbulence wind tunnel described by Bradshaw (1 965) was used with 
a modified 10 in. by 15 in. test section (figure 1). A 2 in. high rectangular step, 
swept a t  45”, was installed on the test section floor. 

Top view 

V 

! 

Side view 

FIGURE 1. Test section and step. Traverse location at  station 1 (2‘ = 2-25 in.), 2 
(2’ = 3.00 in.), 3 (2’ = 3.75 in.), 4 (d = 4.50 in.), 5 (z’ = 6.00 in.), 6 (2’ = 9.00 in.) and 
7 (x’ = 12.00 in.). 

The air in the test section was nominally at room temperature and atmospheric 
pressure. The reference speed of Urei = 104 ft./sec was based 011 the reference 
dynamic pressure, ipU&, = (P, -pref), held constant for all tests. P, is the 
free-stream total pressure and pref the wall static pressure measured in the 10 in. 
by 15 in. inlet duct at  a reference point 20 in. upstream of the f i s t  profile measure- 
ment station, no. 7. The nominal unit Reynolds number for the tests was 

The boundary layer was measured upstream of the step and over the floor 
6.1 105 (ipt.). 
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of the test section. The floor was instrumented with wall static pressure taps 
located along, and to either side of, the reference line. The top wall was made of a 
number of plates cut at the same angle as the step, 45'. The probe traversing gear, 
mounted on one of the top plateo, could be located a t  seven different distances x' 
relative to the step. The whole traversing gear could be moved parallel to the 
step, e.g. along line TT in figure 1. 

The positions x' of the seven traversing locations were selected after some 
preliminary measurements of wall-trace streaks left on an oil and titanium di- 
oxide film applied to the tunnel floor. Station 1, a t  x' = 2.25 in., was located 
just ahead of the flow separation zone, forward of the step. Station 7, a t  x' = 12.00 
in., was located where the flow was essentially two-dimensional and parallel to 
the reference line. At station 7, the boundary layer was 2-3 in. thick. The wall- 
trace streaks indicated that the flow close to the wall was independent of position 
parallel to the step over a region of at least f 3 in. to  either side of the reference 
line. The wall flow thus approximated conditions of flow over an 'infinite' swept 
body. I n  order to be in the region of 'infinite' swept flow, all reported profile 
measurements were obtained with the measurement stations located on the 
reference line. 

The probe traversing gear could move vertically and in yaw. Two different 
probe holding stems were used, one (figure 2(a)) for pressure probes and the 
other (figure 2(b)) for hot wire probes. The latter held the probe axis a t  a 6" 
pitch angle to permit the probe tip to approach the wall closely. The yaw angle 
could be measured to & 0.3" rela,tive to the reference line, the vertical position 
of pressure probes was measured to 0.001 in. and hot wire probes to  & 0.01 in.? 

For the purpose of determining the effects of pitch on the probes, the travers- 
ing gear could be mounted on a device that allowed variation and measurement 
of the pitch angle of a probe over a range of 15" relative to the tunnel floor. 
The device was used with the swept step removed from the tunnel when the probe 
under calibration was located in the central, uniform core of the flow. 

Pressures were read on a precision, multitube, alcohol filled manometer in- 
clined at  20" to the horizontal and a type P-5D Statham pressure transducer. 
The basic uncertainty in pressure readings was estimated to  be & 0.003 vertical 
inches of water. Pressures were read relative to the reference static pressure pref 
or free stream total pressure P,, ansd normalized on the constant dynamic pressure, 
$pU;,, = (P, -pref) ,  to  form pressure coefficients that had minimum uncer- 
tainties of +_ 0.002. 

Two types of hot wire probes were used: a normal, single-wire probe and a 
Disa miniature X-wire probe, type 55 A38 whose manufactured dimensions were: 
wire length 1.2 mm, wire separation 0.2 mm and angle betweGn wires 90 2 3". 
Two Disa 55A01 constant temperature hot wire anemometers and the signal 
processing equipment (multiplier, differential amplifier, integrator, etc.) of the 
NPL Aerodynamics Division (see Bradshaw & Johnson 1963) were used to 
control, process and read out the hot wire signals. Calibration of the wires and 

7 The pressure probes were located by electric contact with the wall, whereas thc hot 
wires were located by visual observabion relative to a machinist's scale held against the 
wall. 
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signal processing equipment was conducted each time a traverse of the boundary 
layer was conducted. 

Probably the most serious source of error in the hot wire measurements was 
the uncertainty in the effective' cosine cooling law angles of the wires in the X- 
wire probe. Calibrations to determine these angles were conducted by pitching 
the probe in the tunnel free-stream and noting output voltage as a function of 
angle for all expected pitch angles +_ 6" relative to the probe axis. The accuracy 
of the measurements, which were accomplished by differentiation of the voltage- 
angle curves, was not sufficient t o  detect deviations from the cosine cooling law. 
The range of possible error in effective, calibrated wire angles was estimated to 
be +2". 

V 
I V 

P 

I 
V 

V 

FIGURE 2 .  Traversing, probe holding stems and probes. y and 0 motion along and around 
axis V-V. (a)  Pressure probes and stem. (6) Hot wire stem; line p-p is probe axis. 

3. Mean flow measurements 
The first mean flow measurements established the wall static pressure distri- 

bution ahead of the step (figure 4). Measurements of wall static pressure out to 
& 3 in. on either side of the reference line showed that spanwise (along the step) 
variation of pressure was less than O.Ol(&pU~e,). C, attained a nearly constant, 
maximum value of 0.14 a t  x' = 1.5 in. out from the step. The forward flow separa- 
tion line was located using a fine wool tuft on a thin rod. It lay roughly at  
x' = 1.5 in. which is consistent with the location of maximum pressure recovery. 
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Because the air had to sweep up over the step, there was substantially greater 
mean streamline curvature than normal in the outer $ of a boundary layer. As a 
result, strong gradients of static pressure normal to the wall occurred in the layer; 
especially in the regions close to'the separation line where the interesting three- 
dimensional aspects of the flow were the largest. It was thus necessary to measure 
profiles of static pressure, as well as total pressure, to allow deduction of mean 
velocity magnitude profiles. 

The traversing stem shown in figure 2(a) was designed to hold various pressure 
probes. Among those used were the three illustrated: no. 1 (a round impact 

[%: Ref.line 
;ri 4'5"-- 8 k Q  ---- 

J 
X 

FIGURE 3. VeIocity components and angles. 

!A ,Wall 

-0.20 ' 
0 5 10 15 

x' (in.) 

FIamE 4. Static pressure coefficient. 8 marks separation point location. 
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pressure tube of 0-025in. o.D.), no. 2 (a Conrad tube made from two, 0.025in. O.D. 

tubes soldered side by side and cut off at the tip with a 70" apex angle), no. 3 
(a thin, flat, disk-static probe made as close as possible in geometry to that 
illustrated in figure l (h)  of Bryer, Walshe & Garner 1955). A fourth probe, 
an impact tube pitched at 10" to the wall, was used to demonstrate that errors due 
to pitch angle on no. 1 probe were negligible. 

30 

c rn a 

20 
s 
m 

10 

0 

x'= 12.00 

Y (in.) 

FIGURE 5. Yaw angle 8.  Typical data, points shown on x' = 3.00 in, curve. 

No. 2 probe, with the two tubes set parallel to the wall, was used to obtain 
yaw angle 8. The stem was rotated, at each profile point, until zero pressure 
differential was obtained across the two tubes. Small calibrated corrections for 
angular runout? of the traversing gear (< 1.5") and local pitch effects ( <  1.0") 
were applied to obtain the final yaw results shown in figure 5. For y > 0.5 in., 
the uncertainty of these results is less than & 0.5", but very near the wall, the 
uncertainty may be as high as & 1.0". 

The limiting wall streamline angles (figure 6) were obtained by extrapolations 
of the results in figure 5 to y = 0. Continuation of the angles Ow, to 45" tends to 
indicate that limiting wall streamlines become parallel to the separation line in 
the manner described as ' ordinary separation ' by Maskell ( 1955). This observa- 
tion is consistent with observations made of the streaks in the preliminary oil- 
film studies. The oil flow streaks appeared to approach the separation line from 
both sides in a tangential manner. 

t The built-in reference angle error which varies with position y. It is caused by manu- 
facturing tolerances and wear in the traversing gear. 
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Profiles of total pressure were measured with probe no. 1. At each profile point, 
the probe was aligned in the local yaw direction. Selected results from the total 
pressure profiles are shown in figure 7 (a). 

As the yaw angle had already been measured, it was possible to align the disk- 
static probe in the local yaw direction. The probe had the characteristic that its 
calibration factor k = OeOS, where k = ( p  -pref)/+pQ2, was insensitive to pitch 
angle over the whole range of calibration ( - 10" to + 15') and yaw angle to f 2". 
The yaw insensitive range was large enough to assure proper operation for all 
probe displacements of y > 0.25 in. In  addition, k was shown to be insensitive to 
Reynolds number effects in tho range of test conditions and final check runs 
showed that lc = 0.08 f 0.01 through the whole depth of the 2.5 in. thick turbulent 
layer obtained on the tunnel floor with the step removed. 

50 

40 

10 

0 

FIGURE 6. Limiting wall strearriline angle 8,. Solid curve calculated by method 
of $5.  S marks separation point location. 

The final static pressure results are shown in figure 4, where C, is plotted as a 
function of y and x'. In  the inner layers, y < 1.0 in., the streamwise positive pres- 
sure gradients are nearly independent of y. However, the pressure gradients be- 
come negative far from the wall. As a consequence of the nearly inviscid behaviour 
of the outer flow, the negative streamwise pressure gradient implies some accelera- 
tion of the free-stream velocity (see values for Q for y 2 3-0 in. in figure 8 )  and, 
for flow over the forward part of an 'infinite ' swept body, some negative yaw is also 
expected and observed (see 8 at y = 3.5 in. in figure 5 ) .  

The mean velocity magnitude Q profiles deduced from the measured total 
and static pressure profiles are shown in figure 8. The free-stream velocity at  all 
seven traversing stations is slightly greater than the upstream reference velocity 
due to the 'effective' slow convergence of the test section area caused by floor, 
roof and side wall boundary-layer growth. 
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Measurement of pitch angle p was accomplished using the Conrad probe, no. 2, 
set on edge in the traversing stem so the two tubes lay in a plane perpendicular 
to the wall. When the probe tip was set a t  the local yaw angle, the pitch angle was 
determined by measurement oft he differential pressure A p  between the two tubes. 
The probe pressure coeEcient ApI$pQ2 varied linearly with pitch angle according 
to initial calibration in the free-stream. Small corrections ( < 1") had to be applied 
to obtain the final results showii in figure 9 in order to account for the effects of 
vertical gradients of dynamic pressure in the boundary layer. The estimated 
uncertainty in p is 2 0.5". 

1 
'1 2 c x'=2.25 in. 

10 

g s  

= 6  
Q=L 

4 

2 

n 
"0 1 .o 2.0 3.0 

Y (in.) 

FIGURE 9. Pitch angle p. Typical data points shown on 2' = 3.00 in. curve. 

Values of the wall shear-stress rW were estimated from the mean velocity pro- 
file measurements using the law of the wall in the form 

Use of the developed mean velocity rather that Q in the formula as suggested by 
Perry & Joubert (1965) gave nearly identical results. A recent note by Pierce & 
Krommenhoek (1968) suggests, on the ba.sis of some direct wall force measure- 
ments in a roughly similar type of three-dimensional turbulent boundary layer, 
that this method may give rwvalues that are N 10% too high. Subsequent measure- 
mentst using a Preston tube substantiated this conclusion. Figure 10 is shown to 
illustrate the degree of fit of the present data to the law of the wall formula. No 
corrections for effective displacement of the impact tube centre have been applied. 

t By Bradshaw in 1968 on my original apparatus. 
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Figure 11 shows the wall shear-stress as a function of distance from the step. 
Even if the values ofr, were reduced by lo%, i t  does not appear that the stress 
would extrapolate to zero at the separation line. This is further evidence of the 
'ordinary' nature of the separation; under such conditions the wall stress is not 
required to be zero. 

The hodograph plots of the mean velocity vector projection in the wall plane 
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FIGURE 10. Law of the wall plot of velocity magnitude data: 0, z' = 3-00 in. ; 
A, 4.50 in.; 0, 12.00 in. 
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FIGURE 11. Wall shear stress. Solid curve calculated by method of $5 .  
S marks separation point location. 
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are shown in figure 12. Peak values of the cross-flow velocity, occurred 
between y = 0.03 and 0-07 in. from the wall at  y(~ , /p ) * /v  values of 60-100. 
The angles of the mean velocity gradient vector (see figures 18(a), ( b ) )  were 
obtained from the slopes of the curves in figure 12. In the outer flow, the rapid 
change of @with respect to 0 is thought to be associated with the nearly poten- 
tial nature of the flow over the step. Similar effects can be seen in the hodograph 
plots of the data of Joubert, Perry & Brown (1967) (see their figure 8), for a three- 
dimensional turbulent layer generated by a hill on a flat plate. 

0.3 I 

Olv,,, 
FIGURE 12. Hodograph plot of @ vs. 0 :  +, 5‘ = 2.25 in.; 0 ,  3.00 in.; v, 3.75 in.; 
A, 4-500 in. ; x ,6-00 in. ; 0, 9.00 in. Typical data points shown on curves for x‘ = 3.00 in. 
and 4.50 in. 
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FIGURE 13. Stream function contours in the d-y plane-normal to the step. 

Because of the greater than normal pitch in the experimental boundary layer, 
mean streamlines were not lines of nearly constant y. Some of the results are 
more ea,sily interpreted when their values are examined for changes along stream- 
lines. Hence, it was desired to plot some of the results against the stream function 
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$- rather than y.  Assuming the flow in the region of measurement is equivalent to 
the flow over an 'infinite ' swept body, $- was determined from the mean velocity 
mofiles. using 
I 

Figure 13 shows contours of constant $ in the y-x' plane. 
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FIGURE 14(a), ( b ) .  Step-parallel velocity component profiles: +, 2' = 12.00 in.; 
A, 4.50in.; 0 ,  3.00 in. 

Figures 14 (a)  and ( b )  illustrate the value of $ as an independent parameter for 
profile plots. The velocity component W parallel to the step is shown ws. y in 
figure 14(a), and $ in 14(b). In 14(b) all profiles collapse to a common curve, as 
expected for flow over an 'infinite' swept body where there are no net forces in 
the step-parallel direction to cause change of the W directed fluid particle momen- 
tum. 

53-2 
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For flow of a thick turbulent boundary layer over a step set normal to the flow, 
there is, due to the rapid streamwise deceleration of the flow, very little change in 
total pressure P along mean streamlines, except very near the wall (Bradshaw & 
Galea 1967). A similar conclusion can be drawn from the data of this experiment 
as shown in figure 7 (b ) ,  where P is plotted against $rather than y as in figure 7 (a). 

4. Turbulence measurements 
For convenience, the three mutually perpendicular velocity fluctuation com- 

ponents ql, q2 and q3 (see figure 3) were measured. The longitudinal component 
q1 parallels the direction of the mean velocity vector Q, and q3 is defined to be 
parallel to the wall. The results are presented in terms of the components cl, 
c2 and c3, along and perpendicular to C, the wall projection of the mean velocity 
vector Q. The equations relating these components are: 

c1 = q1cosp-q2sinp, P a )  
c2 := q1 sin /3 + q2 cos p, 
c3 := q3. 

The relationships between the components of the Reynolds stress for these two 
sets of components are: 

and its direction relative to the reference line is 

0, = O+arctan[(-@J/(-E&]. 

The turbulence energy PI2 is obtained from 
- - - - - - - - 
q 2  = q;+q;+q; = c2 = c2,+c;+c;. 

Profiles of the longitudinal turbulence intensity 3 were obtained a t  each of the 
seven traversing stations with the single wire probe mounted in the traversing 
stem, so that the wire was parallel to the wall. At each station and yposition, 
the probe was set at the previously measured yaw angle so that the wire would 
be perpendicular to the mean velocity vector Q. 

All other measurements were accomplished with the X-wire probe. The travers- 
ing stem was designed to allow the measurement of G2 and q3q2, the two princi- 
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pal contributions to the shear-stress components -p(Z&) and -p(c,cZ), by the 
quarter-squares method (Bradshaw & Johnson 1963). The quantities qg and 
were obtained by the regular cross-wire method. 

Angular position of 
plane of wires about 

probe axis, p p  

Perpendicular to the 
wall 

Rotated 180" relative 
to position number 1 

Rotated + 45" relative 
to position number 1 

Rotated - 45" relative 
t o  position number 1 

Rotated + 90" relative 
to position number 1 

Position 
numbor 

1 

2 

3 

4 

5 

Wire 
number 

1 
2 

1 
2 

1 
2 

1 
2 
I 
2 

TABLE 1. Wire response equations for X-wire probe 

To carry out the required operations, the crossed wire probe could be mani- 
pulated from outside the tunnel to rotate the probe stem about its axis (line 
pp in figure 2 (6)) into any one of five different angular positions. The wire res- 
ponse equations ( 7 a ) - ( 7 j )  are shown in table 1, together with a description of 
the five positions. Ideally, the probe axis should always have been aligned with 
the mean velocity vector. Yaw alignment was achieved at  every measuring point, 
but pitch variations had to be accounted for in the coefficients, aijand bij, of the 
response equations (table 1). The response equations were used to deduce the 
data reduction equations, which follow: 

qg was obtained by subtracting, squaring and averaging the output signals 
from wires 1 and 2 when the probe was in position 1. Equations (7a)  and ( 7 b )  
give the result, 

- 

(8) 

is similarly obtained with the probe in position 5, where the crossed wires are 

- [ (e l l  - q;= ___ - (all - a12)2z - 2(a11- %2)(bll+ b 1 2 )  4 1 4 2  

@l l+  b 1 2 f Z  

both nearly parallel to the wall. Equations (7 i )  and ( 7 j  ) yield 

plElz was obtained by subtracting the mean square output of wire 1 while held 
in position 1 from its output in position 2 .  Equations ( 7 a )  and (7c), when they 
are squared, averaged and subtracted, give the equation, 
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Finally, the quantity g2 was obtained by subtracting the mean squares of 
output differences (e31 - e3J and (e41 - ea2) from the two wires when held succes- 
sively in positions 3 and 4. Equations (7e)-(7h) give 

Nl = (a31-u32)(b31+ b3Z)d2, = (a41-u42)(b41+b42)2/2. 

The advantage of the method used is evident upon examination of (8)-(11). 
If the wires were precisely a t  45" to  the vector Q, all the ai3 will equal the bij, 
and all the correction terms to the right of the measured output terms (in square 
brackets) go to  zero. I n  fact, these corrections were small, but had to be retained 
as the effective wire angles varied by the amount & 6" depending on wire, probe 
position and local pitch angle. Thus, the full equations (S)-( 11) were retained in 
the final data reduction procedure, which also contained (3), to convert the out- 
put into final form in terms of c:, ci, etc. 

The terms containing 2 in (8)- ( I  1) are potentially the largest correction factors 
as q: - x U,Z,, compared to1 the value of 2 and 2, which are two to four 
times smaller than 2 and qlq2 and m, which are of the order x U$f and 
10-4 x U:ef, respectively. However, the single wire measurements of 3, when 
used to evaluate these correction terms in the final data reduction, were of 
sufficient accuracy because of the small magnitudes of the correction term co- 
efficients. 

I n  (9)-( 11) for the cross-stress correlation q3q2, the correlation q13p1 appears 
in the last correction term. Because the pitch angle p i s  small, Q3ql is nearly equal 
to cQc1, the correlation of the velocity fluctuations along and normal to C (see 
( 3 f ) ) .  No attempt was made to measure this term during the original experiments. 
g3ql was set equal to zero. Hence CQCl was also close to zero. 

It is possible to take other posit,ions with regard to the correlation of fluctuations 
in the plane of the wall. If the turbulence field is assumed to take up the symmetry 
conditions required of 'infinite' swept flow, then the correlation of the perpendi- 
cular fluctuation components u, normal to, and w, parallel to the step should go 
to zero, i.e. U-W = 0 close to  the step. On the other hand, upstream, where the flow 
is two-dimensional, the correlation of components .ii and G, parallel and normal 
to the reference line, should be zero, i.e. &% = 0. Data reduction using all three 
assumptions (i.e. 4r,gl = 0,  .iiG = 0, u.W = 0 )  indicated that no significant changes 
in results were detected when the assumption% = 0 was substituted for Gl = 0,  
but a t  the downstream stations wildly different values in && occurred in the outer 
parts of the layer when UW = 0 was assumed. Near the wall (y < 0.5 in.) all 
assumptions gave nearly equalvalues of 43pz. Upstream, at station 12, the assump- 

_ _  

- 

-_ 
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tion UW = 0 gave, as expected, results that were obviously in error. Subsequent 
direct measurements? of vindicated the original assumption that p3Q1 = 0. 
The measured values of (C,C,/U:ef) were less than 3 x in magnitude, too 
small to contribute a significant correction to Q3q2 calculated from (1 1) .  

Complete profile measurements were taken at  downstream stations 2 and 4 
and at 7, the upstream station.$ The results are plotted in figures 15-18. 
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FIGURE 15. Components of turbulence intensity: A ,  C ~ / V & ~ ;  0, C ; / U : ~ ;  x , ci/U:ei. 
(a)  At x‘ = 12.00 in. (6) At x’ = 4-50 in. ( c )  At x’ = 3.00 in. 

Theresults of greatest interest are the angleso,, of the shear-stress vector shown 
for the downstream stations in figures 18 (a )  and (b).  Upstream at x’ = 12 in. the 
values of 8, should have equalled zero, but over almost the whole layer 
(0.1 < y < 1.50 in.) the measured values of 8, M + 2 O ,  and at  the closest point 
to the wall, y = 0.50 in, 8, = + 5.5”. On the basis of these results, it was concluded 
that fixed errors of from 0.3 to 1 x lo4 Uzef could occur in the results. The 
source of these errors is unknown, but at  the downstream stations, bars have 
been drawn below the 8, data points in figures 18 (a)  and (b )  to indicate the down- 
ward shift required to account for the 8, errors noted at the upstream station. 

The experimental uncertainties in the other measured turbulence quantities are 
estimated to be less than ? 10% of their peak values except possibly for the points 
closest to the wall ( y  6 0-1 in.), where uncertainties may be as high as 15%. 

t Conducted on the original apparatus by Mr Gordon Hutchings. 
$ Valuable check measurements for y = 0.5 and 1.0 in. a t  stations 2 ,  4, 5 ,  6 and 7 were 

carried out independently by Mr Ian Hogg. 
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FIGURE 16(a), (b). Turbulence intensity: 0, x' = 12.00 in.; 0, 4.50 in.; A ,  3.00 in. 
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FIGURE 17(a), (b). Turbulent shear-stress magnitude: 0, x' = 12.00 in.; 
0, 4.50 in.; A,  3.00 in. 
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FIGURE 18 (a), (b). 0, angles of velocity 8; 0, shear-stress 8,; A, mean velocity gradient 
vectors relative to the tunnel reference line. Computation from $5 shown as lines: 
-, yawangle 6 ;  -.-.- , shear-stress angle 8,; ----, mean velocity gradient vector angle. 
(a)  At x' = 4.5 in. ( 6 )  At x' = 3.0 hi. 
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The results of the measurements may again be more easily interpreted when 
plotted us. stream function as indicated in figures 16 and 17. The turbulence 
intensity 4” and shear-stress r appear to grow too rapidly into the outer layers 
when plotted against, distance from the wall. However, when examined for 
changes along mean streamlines in figures 16 (b )  and 17 (b) ,  it is seen that they 
have increased only slightly in the streamwise direction, except near the wall. 
Both and T exhibit a peculiar peak just below y = 0.5 at  x’ = 3.0 in. A t  first 
this peak was believed to be the result of some experimental error, but later 
calculations ( 5  5) indicated that the peak could result from reduction of turbulent 
dissipation due to the concave upward curvature of the mean flow in the wall 
normal plane. 

5. Calculations 
An attempt to predict the mean velocity and shear-stress profiles was carried 

out using Bradshaw’s (1969) three-dimensional method. The calculations were 
programmed in rectangular Cartesian co-ordinates where x, U and rx = -pii;Tj 
were set normal to the step and x ,  W and rz = -pWV parallel to the step, see 
figure 3. The conditions of ‘infinite’ swept flow were assumed so that all deriva- 
tives with respect to the z direction were set to zero. 

The basic equations used were the boundary-layer momentum equations, 

where 

and the incompressible continuity equation 

au av 
ax ay 
- + - = o .  

The equation for the rate of change of the scalar magnitude, r = (rt+r;)&, 
of the shear-stress is 

where a, = r/?, L the dissipation length, and G the diffusion function are defined 
precisely as in two-dimensional flow by Bradshaw et al. (1967). The equation for 
the rate of change of direction (component ratio) of the shear-stress is 

It is seen that a dissipation term does not appear in (17). Hence, near the surface 
where rates of change of shear-stress and diffusion terms become small, i.e. where 
a scalar ‘eddy viscosity’ model might be appropriate, (1) should be valid. 
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A program? for solving these equations was constructed to  compute results 
st,arting with the initial conditions provided by the U ,  W ,  rz and r2 data at  station 
7, xf = 12-00 in. The numerical technique and methods for satisfaction of boun- 
dary conditions were very similar to those of Nash (1969). 

Bradshaw (1969) carried out calculations for this case using the wall values of 
the static pressure gradients (ap/ax),. His results deviated appreciably from the 
measured results in the outer flow for y > 1.00 in. from the wall because of the 
large pressure gradients normal to the wall. To overcome this problem, the local 
value of apjax, determined as a function of x and y from the data in figure 4, 
was fed into the computer program. 

The computed results for limiting wall streamline angle and wall shear-stress 
are shown in conjunction with the data in figures 6 and 11, respectively. Cal- 
culated angles of velocity vector 8, shear-stress B,, and mean velocity gradient 
for the stations a t  x’ = 4-5 and 3.0 in. are given in figure 18 (u), (b ) .  The computed 
yaw angles 8, like the values of the velocity magnitude Q (not shown), were in 
good agreement with the measurements even though the shear-stress angle 8, 
is not accurately predicted in the inner half of the layer. Clearly, the reason for 
this apparent inconsistency must3 be the weak influence of the small cross-flow 
shear-stresses (r sin O7 < 1.5 x 10-4pU&f) on the establishment of the mean 
velocity field in such a strong pressure gradient situation. 

Within the restrictions and awumptions implied by use of (16), Bradshaw 
( 1 9 6 9 ~ ~ )  developed a first-order correction for the dissipation length scale L 
to account for the effects of wall curvature on the turbulent shear-stress. He 
has suggested$ an extension to this method for three-dimensional layers, which 
for concave surfaces consists of multiplying the flat plate L value by a factor 
(1 - 4.5 Ri). Ri is the first-order approximation for the Richardson number, i.e. 

where R (negative for concave surfaces) is the surface radius of curvature of a 
developable surface. U and r, are taken normal to  the surface generators. I n  the 
experiment the surface was flat, but, due to flow up over the step, the mean 
streamlines had concave curvature over most of the outer layers, see figure 13. 
Values of R/6, estimated from the data, ranged from approximately - 250 at 
xf = 12.00 in. to - 5 a t  xf = 3-00 in. A recalculation of the results using the curva- 
ture correction factor to  modify I; produced significant change in only one cal- 
culated quantity, the shear-stress magnitude r. The uncorrected calculations 
did not show the peak value of r/pC&f = 1.74 x a t  y = 0.5 in. and x‘ = 3-00 
in. (see figure 17 (a)), whereas the curvature corrected results show this peak in 
the right location and with nearly the exact experimental magnitude. The 
peaking of the 2, figure 16, and the  r profile at the x’ = 3.0 in. station had not 

t Coded and run by Mr A. J. Wheeler of Stanford. 
$ Private communication and Bradshaw (1969). The general form of the factor is 

(1 +PRi)-l or (1 -pRi), wherep = 7 for convex (R > 0) surfaces or 4.5 for concave ( R  < 0) 
surfaces. It probably should not be used for lRil > 0.2. In  our calculation [Ri( became 
large in the outer part of the layer and the form (1 - 4.5 Ri) had to be chosen to avoid the 
calculation of negative values of L. 
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previously been understood, but these peaks are now believed to be caused by 
the curvature induced reduction of turbulent dissipation (i.e. increase in dissipa- 
tion length scale L). 

The fact that these first-order curvature corrections do not essentially modify 
the other calculated results is not surprising. L does not enter directly into the 
shear-stress direction calculation (17) ,  and the mean velocity field development 
depends primarily upon the strong pressure gradients of this flow; it is only 
secondarily dependent upon changes of shear-stress along the mean streamlines. 

6. Conclusions 
Even when the most pessimistic estimates concerning error in the measured 

shear-stress angles 6,  are considered, it is believed that the present measurements 
demonstrate the possibility of substantial deviation of the turbulent shear-stress 
direction from the mean velocity gradient direction. For example, angular differ- 
ences of the order 15"-20° between these two directions are shown to exist at 
x' = 3.0 in. in figure 18(b).  Furthermore, the assumptions of Bradshaw for 
computing the shear-stress direction gave results that, although closer to the 
measurements, are opposite in trend over most of the layer. That is, in the outer 

of the layer the calculated results for 6, are increasingly negative as the wall 
is approached, while the measurements increase in the positive sense. It has 
already been shown that a first-order correction for the effects of mean streamline 
curvature in the plane normal to the wall cannot account for this difficulty. 

It is not surprising to find that the isotropic eddy-viscosity concept, which 
predicts the equivalence of shear-stress angle and mean velocity gradient angle, 
should fail for the severe conditions of this experiment. However, it  is much more 
difficult to understand the failure of the rate equation approach of Bradshaw to 
at least predict the correct trends for the variaton of 8, with y. Possibly, our 
current ideas about the nature of three-dimensional turbulence are in part wrong. 
On the other hand, the key to understanding the contradictory results of theory 
and experiment may lie in some as yet unknown difficulty with the experimental 
conditions. Further general speculation, unsupported by improved theory or 
new data, cannot at  this time resolve the issue. 

Finally, although this study raises some new questions about the models 
currently in use for representation of three-dimensional turbulent shear stress, 
the current differential computing methods show great promise for engineering 
computations of the mean flow field. The success of these methods in mean field 
prediction for this case should not, however, be taken as absolute proof of their 
generality, since the flow was SO dependent upon the pressure field that quite 
large errors in computed shear-stress direction had a negligible effect on the 
computed mean flow. 

The experimental part of this study was carried out in the Aerodynamics 
Division of the National Physical Laboratory, Teddington, England. The 
financial assistance, in the form of a Visiting Research Fellowship from the 
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